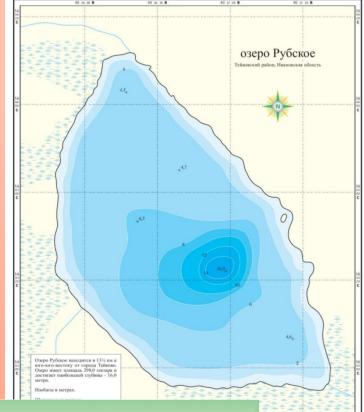
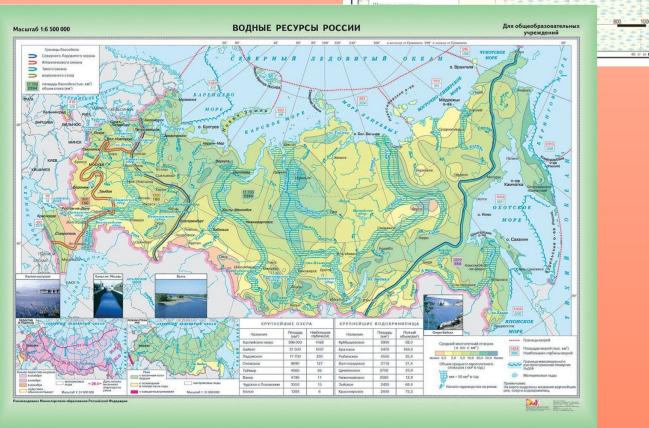
Применение автоматизации в топографо-геодезическом производстве при определении объемов объектов

Задачи

Разработка программы для определения объемов объектов по топографическим картам методом среднего арифметического на языке программирования Visual Basic for Applications в Microsoft Office.


Сравнение результатов вычислений и времени, потраченного на выполнение работы, с другими классическими способами определения объемов объектов: аналитическим, графоаналитическим и вероятностно-статистическим.

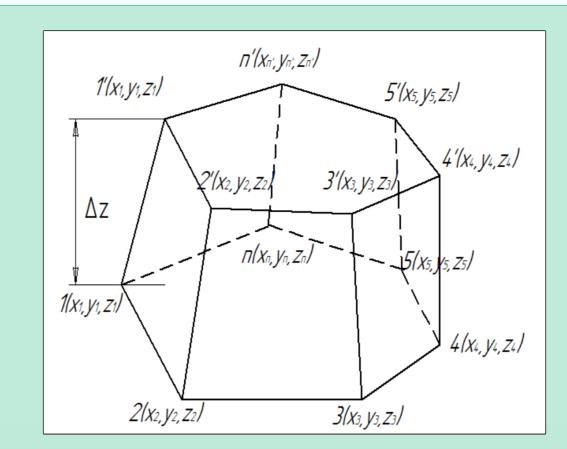
Алгоритм программы


- 1. Ввод количества точек верхнего n' и нижнего n оснований.
- 2. Ввод координат вершин оснований: *x*, *y*, *z*.
- 3. Вычисление площадей верхнего F' и нижнего F оснований.
- 4. Вычисление средней разности высот верхней и нижней бровок Δz .
- 5. Вычисление объема тела V.

Варианты применения программы

Вычисление объема водной массы по батиметрическим картам

Вычисление объема Годового стока


Материалы и методы исследования

При работе с гипсометрическими, гидрологическими, климатическими и другими картами часто возникает необходимость подсчета объема каких-либо объектов или явлений.

Для получения объемов географических объектов используют аналитический, графический и вероятностно-статистический методы, которые считаются классическими в картометрических работах данной тематики:

- Аналитический метод использует в качестве исходных данных площади поверхностей горизонтальных сечений географических объектов, которые могут быть определены в результате картометрических работ.
- Графический метод требует предварительного построения кумулятивной кривой.
- Вероятностно-статистический метод основан на использовании различных типов объемных палеток. Его основная идея заключается в представлении рассматриваемого объекта в виде суммы косоусеченных призм.

Специалистам топографогеодезического направления, наиболее близок способ вычисления объемов объектов методом среднего арифметического, поскольку позволяет работать с координатами объекта.

Для подсчета объема объекта методом среднего арифметического в первую очередь, необходимо вычислить площади верхнего и нижнего оснований по формулам (1) и (2):

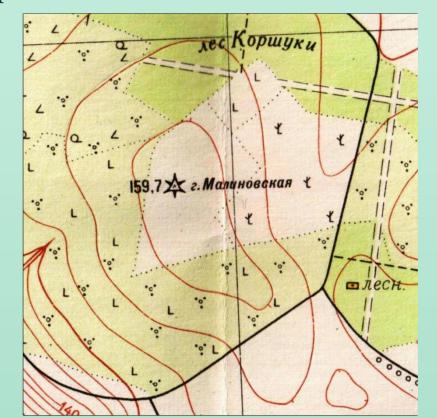
$$F' = \frac{1}{2} \left| \sum_{i=1}^{n'} (x'_i \cdot y'_{i+1} - x'_{i+1} \cdot y'_i) \right| \tag{1}$$

$$F = \frac{1}{2} \left| \sum_{i=1}^{n} (x_i \cdot y_{i+1} - x_{i+1} \cdot y_i) \right|$$
 (2)

Где x_i, y_i - координаты i - точки нижней бровки,

 x_{i}^{\prime} , y_{i}^{\prime} - координаты i - точки верхней бровки,

n,n' - число контурных точек нижней и верхней бровок.


Во вторую очередь, необходимо найти среднюю разность высот верхней и нижней бровок по формуле (3):

$$\Delta z = \left| \frac{\sum_{i=1}^{n} z - \sum_{i=1}^{n'} z'}{n} \right|$$
 (3)

Далее необходимо вычислить объем объекта по формуле (4):

$$V = \frac{1}{2}(F + F') \cdot \Delta z \tag{4}$$

В качестве исходного материала рассматривалась учебная топографическая карта масштаба 1:10 000 У-34-37-В-в-4, объект исследования – гора Малиновская.

Исходными данными служат координаты вершин оснований объекта, которые вводятся с клавиатуры самостоятельно. Необходимо ввести количество точек верхнего n и нижнего n оснований и их координаты: x, y, z.

За начало координат следует принять ближайшее перекрестие километровой сетки. В качестве оснований необходимо выбрать области, ограниченные замкнутыми горизонталями. Исследуемый нами объект целесообразно разделить на фигуры, следовательно, объема вычисления процедуру необходимо сделать для каждой фигуры отдельно, а результаты сложить.

Анализ результатов

В век информационных технологий создано большое количество программ, которые ускоряют процесс решения различных инженерных задач, в том числе и геодезических. Так, на основе языка программирования Visual Basic for Applications в Microsoft Office предложен метод среднего арифметического для определения объемов объектов.

В ходе работы по топографической карте 1:10000 был подсчитан объем горы Малиновская различными методами.

		Объем	Время			
	Метод	объекта,	выполнения			
		KM^3	работы, мин			
	Аналитический	0,0002195	30			
	Графоаналитиче-	0,0002245	30			
	ский	0,0002210				
	Вероятностно-	0,0002135	35			
	статистический	0,0002133				
	Средне	0,0002181				
	арифметический	0,0002181				
	Средне		20			
	арифметический	0,0002181				
	(Microsoft Excel)					

Исходя из результатов таблицы, можно сделать вывод о том, что вычисление объемов объектов методом среднего арифметического является не только быстрым, по сравнению с другими методами, но и достаточно точным. Такое заключение было сделано на основании наиболее точным из используемых классических методов вычисления объемов объектов является аналитический метод, а результат получившийся методом среднего арифметического отличается от него на Для проверки корректности работы программы был произведен подсчет объема объекта в Microsoft Excel, путем введения в ячейки формул необходимых для вычисления. Результат исследуемого параметра при проверке в Microsoft Excel остался неизменным, что говорит о том, что код программы Полученный написан корректно. результат подтверждает надежность предложенного метода и говорит о возможности использования его в учебном и производственном процессе.

Интерфейс и результат работы программы

							_								
Координаты верхнего основания		Координаты нижнего основания				Коорди	Координаты верхнего основания			Координаты нижнего основания			,		
Х	У	Z	Х	У	Z	Колличество вершин верхнего основания: 2	X	V	Z		X	V		Колличество вершин верхнего основания:	: 41
-0,23	-0,10	159,7	-0,40	0,06	157,5	Колличество вершин нижнего основания: 41	-0,40	0,06	157,5		-0,56	0,08		Колличество вершин нижнего основания:	
-0,33	-0,05	157,9	-0,38	0,05	157,5	Площадь верхнего основания: 0	-0,38	0,05	157,5		-0,54	0,09	 	Площадь верхнего основания:	0,034
			-0,36	0,04	157,5	Площадь нижнего основания: 0,034	-0,36	0,04	157,5	1	-0,52	0,10	<u> </u>	Площадь нижнего основания:	0,123
			-0,35	0,03		Средняя разность высот: 1,3	-0.35	0,03	157,5		-0,50	0,11		Средняя разность высот:	2,5
			-0,34	0,02		Объем объекта: 0,00002	-0,34	0,02	157,5		-0,48	0,12	 	Объем объекта:	0,0001958
			-0,32	0,01	157,5		-0,32	0,01	157,5	1	-0,46	0,12	155	O DEM O DENTA.	0,0001330
			-0,30	0,00	157,5		-0,32	0,01	157,5		-0,43	0,12	155		
			-0,29	-0,01	157,5			- 	 '	_	<u> </u>	'	 	-	
			-0,27	-0,01	157,5		-0,29	-0,01	157,5		-0,40	0,11	155		
			-0,25	-0,01	157,5		-0,27	-0,01	157,5		-0,38	0,11	155		
			-0,23	-0,02	157,5		-0,25	-0,01	157,5	_	-0,36	0,10	155		
			-0,22	-0,02	157,5		-0,23	-0,02	157,5		-0,33	0,08	155		
			-0,20	-0,02	157,5		-0,22	-0,02	157,5		-0,31	0,06	155		
			-0.17	-0,03	157,5		-0,20	-0,02	157,5		-0,29	0,05	155		