«Лучшие идеи в области геодезии»

Полуянова Анна Николаевна

«Применение автоматизации в топографо-геодезическом производстве при определении объемов объектов»

Аннотация

В данной работе рассматривается альтернативный классическим картометрическим методам метод среднего арифметического на языке программирования Visual Basic for Applications в Microsoft Office для определения объемов объектов по топографическим картам. Метод позволяет на основе программного продукта вычислять объем любого объекта по топографическим картам, разбив его на фигуры с двумя основаниями при условии ввода вручную координат точек вершин оснований. Использование данного метода может иметь широкое практическое применение в геодезических, кадастровых, гидрографических и др. работах, где часто возникает задача определения объемов объектов. Предложенная методика позволяет получать точные результаты в короткие сроки, что, весьма важно, в учебной и производственной деятельности.

Работа содержит 7 стр., 4 рис., 2 табл., библ. список из 6 наименований.

Введение

В современном мире, быстрый и качественный расчет геодезических параметров является необходимым условием для решения многочисленных инженерных вопросов. Кроме точных натурных измерений большое значение имеют камеральные и картометрические работы. Выполнение картометрических работ – процесс трудоемкий и занимает большое количество времени. В рамках учебной и производственной деятельности часто возникает задача получения точного результата в быстрые сроки.

Для решения ряда прикладных, в том числе геодезических задач, инновационной является методика по определению картометрических параметров на основе процессов автоматизации, которая позволяет в короткие сроки получить результат высокой точности.

Так, в данной работе рассматривается метод среднего арифметического на языке программирования Visual Basic for Applications в Microsoft Office для определения объемов объектов по топографическим картам.

Постановка задачи

Разработать метод среднего арифметического на языке программирования Visual Basic for Applications в Microsoft Office для определения объемов объектов по топографическим картам. Сравнить результаты вычислений и время, потраченное на выполнение работы, с другими классическими способами определения объемов объектов: аналитическим, графоаналитическим и вероятностно-статистическим.

Материалы и методы исследования

При работе с гипсометрическими, гидрологическими, климатическими и др. картами часто возникает необходимость подсчета объема каких-либо объектов или явлений.

Для получения объемов географических объектов используют аналитический, графический и вероятностно-статистический методы, которые считаются классическими в картометрических работах данной тематики [2, 3, 5]. Так, аналитический метод использует в качестве исходных данных площади поверхностей горизонтальных сечений географических объектов, которые могут быть определены в результате картометрических работ. Графический метод требует предварительного построения кумулятивной кривой. Вероятностно-статистический метод основан на использовании различных типов объемных палеток. Его основная идея заключается в представлении рассматриваемого объекта в виде суммы косоусеченных призм. [4] Специалистам топографо-геодезического направления, наиболее близок способ вычисления объемов объектов методом среднего арифметического, поскольку позволяет работать с координатами объекта (рис. 1). [1]

Рис. 1. Схема к вычислению объема объекта методом среднего арифметического

Для подсчета объема объекта методом среднего арифметического в первую очередь, необходимо вычислить площади верхнего *F* 'и нижнего *F* оснований по формулам (1) и (2):

$$F' = \frac{1}{2} \left| \sum_{i=1}^{n'} (x'_i \cdot y'_{i+1} - x'_{i+1} \cdot y'_i) \right|$$
(1)

$$F = \frac{1}{2} \left| \sum_{i=1}^{n} (x_i \cdot y_{i+1} - x_{i+1} \cdot y_i) \right|$$
(2)

где x_i, y_i - координаты точки i нижней бровки,

 x'_{i}, y'_{i} - координаты точки i верхней бровки,

n,*n*'- число контурных точек нижней и верхней бровок.

Во вторую очередь, необходимо найти среднюю разность высот верхней и нижней бровок Δz по формуле (3):

$$\Delta z = \left| \frac{\sum_{i=1}^{n} z}{n} - \frac{\sum_{i=1}^{n'} z'}{n'} \right|_{.}$$
(3)

Далее необходимо вычислить объем объекта V по формуле (4):

$$V = \frac{1}{2}(F + F') \cdot \Delta z \tag{4}$$

В качестве исходного материала рассматривалась учебная топографическая карта масштаба 1:10 000 У-34-37-В-в-4, объект исследования – гора Малиновская (рис. 2).

Рис. 2. Участок топографической карты масштаба 1:10 000

Исходными данными служат координаты вершин оснований объекта, которые вводятся с клавиатуры самостоятельно. Необходимо ввести количество точек верхнего n'и нижнего n'оснований и их координаты: x, y, z.

За начало координат следует принять ближайшее перекрестие километровой сетки. В качестве оснований необходимо выбрать области, ограниченные замкнутыми горизонталями. Исследуемый нами объект целесообразно разделить на две фигуры, следовательно, процедуру вычисления объема необходимо сделать для каждой фигуры отдельно, а результаты сложить.

Алгоритм действий методики

- 1. Ввод количества точек *n*' верхнего и нижнего *n*' оснований.
- 2. Ввод координат вершин оснований: x, y, z
- 3. Вычисление площадей верхнего *F* 'и нижнего *F* оснований.
- 4. Вычисление средней разности высот верхней и нижней бровок Δz .
- 5. Вычисление объема тела V.

Листинг программы

Листинг программы для вычисления объема тела методом среднего арифметического на языке программирования Visual Basic for Applications в Microsoft Office представлен в таблице 1. [6]

Таблица 1

Sub Объем() Dim x1(100), y1(100), z1(100), x2(100), y2(100), z2(100) n1 = Worksheets("лист1").Cells(2, 9)n2 = Worksheets("лист1").Cells(3, 9)For i = 3 To n1 + 3x1(i - 2) = Worksheets("лист1").Cells(i, 1)y1(i - 2) = Worksheets("лист1").Cells(i, 2): Next i $y_1(n1 + 1) = y_1(1)$: $y_1(0) = y_1(n1)$ p1 = 0For i = 1 To n1p1 = p1 + x1(i) * (y1(i + 1) - y1(i - 1)): Next i p1 = Abs(p1) / 2Cells(4, 9) = p1For i = 3 To $n^2 + 3$ x2(i - 2) = Worksheets("лист1").Cells(i, 5)y2(i - 2) = Worksheets("лист1").Cells(i, 6): Next i $y_2(n^2 + 1) = y_2(1)$: $y_2(0) = y_2(n^2)$ p2 = 0For i = 1 To n^2 p2 = p2 + x2(i) * (y2(i + 1) - y2(i - 1)): Next i p2 = Abs(p2) / 2Cells(5, 9) = p2For i = 3 To n1 + 3z1(i - 2) = Worksheets("лист1").Cells(i, 3): Next i $dz_{1} = 0$ For i = 1 To n1dz1 = dz1 + z1(i): Next i dz1 = dz1 / n1For i = 3 To n2 + 3z2(i - 2) = Worksheets("лист1").Cells(i, 7): Next i $dz^2 = 0$ For i = 1 To n^2 $dz^{2} = dz^{2} + z^{2}(i)$: Next i dz2 = dz2 / n2Z = Abs(dz1 - dz2)Cells(6, 9) = ZV = 1 / 2 * (p1 + p2) * Z / 1000Cells(7, 9) = VEndSub

Результаты работы программы представлены на рис. 3 и рис. 4:

Координаты верхнего основания			Координаты нижнего основания			основания		
х	у	Z		х	у	Z	Колличество вершин верхнего основания:	41
-0,40	0,06	157,5		-0,56	0,08	155	Колличество вершин нижнего основания:	54
-0,38	0,05	157,5		-0,54	0,09	155	Площадь верхнего основания:	0,034
-0,36	0,04	157,5		-0,52	0,10	155	Площадь нижнего основания:	0,123
-0,35	0,03	157,5		-0,50	0,11	155	Средняя разность высот:	2,5
-0,34	0,02	157,5		-0,48	0,12	155	Объем объекта:	0,000196
-0,32	0,01	157,5		-0,46	0,12	155		
-0,30	0,00	157,5		-0,43	0,12	155		
-0,29	-0,01	157,5		-0,40	0,11	155		
-0,27	-0,01	157,5		-0,38	0,11	155		
-0.25	-0.01	157.5		-0.36	0.10	155		
-0.23	-0.02	157.5		-0.33	0.08	155		
-0.22	-0.02	157.5		-0.31	0.06	155		
-0.20	-0.02	157.5		-0.29	0.05	155		
-0.17	-0.03	157.5		-0.26	0.05	155		
-0.15	-0.03	157.5		-0.23	0.05	155		
-0.14	-0.05	157.5		-0.20	0.05	155		
-0.13	-0.06	157.5		-0.17	0.05	155		
-0.13	-0.08	157,5		-0.15	0.05	155		
-0.14	-0.10	157,5		-0.11	0.05	155		
-0.14	-0.11	157,5		-0.08	0.03	155		
-0.15	-0.13	157,5		-0.05	0.02	155		
-0.16	-0.14	157,5		-0.02	0,02	155		
-0,10	-0,14	157,5		-0,02	-0.03	155		
-0,17	-0,15	157,5		0,01	-0,05	155		
-0,18	-0,10	157,5		-0.01	-0,00	155		
-0,20	-0,10	157,5		-0,01	-0,03	155		
-0,21	-0,15	157,5		-0,02	-0,11	155		
-0,25	-0,15	157,5		-0,02	-0,15	155		
-0,25	-0,13	157,5		-0,04	-0,10	155		
-0,27	-0,14	157,5		-0,30	-0,19	155		
-0,29	-0,14	157,5		-0,07	-0,21	155		
-0,51	-0,13	157,5		-0,08	-0,25	155		
-0,52	-0,13	157,5		-0,11	-0,25	155		
-0,35	-0,12	157,5		-0,14	-0,26	155		
-0,30	-0,10	157,5		-0,18	-0,26	155		
-0,37	-0,08	157,5		-0,20	-0,25	155		
-0,38	-0,07	157,5		-0,23	-0,23	155		
-0,39	-0,05	157,5		-0,26	-0,22	155		
-0,39	-0,02	157,5		-0,29	-0,22	155		
-0,40	0,00	157,5		-0,32	-0,21	155		
-0,41	0,02	157,5		-0,35	-0,21	155		
-0,42	0,03	157,5		-0,37	-0,19	155		
				-0,39	-0,18	155		
				-0,41	-0,16	155		
				-0,42	-0,14	155		
				-0,44	-0,12	155		
				-0,44	-0,10	155	4	
				-0,45	-0,07	155	4	
				-0,46	-0,04	155		
				-0,47	-0,03	155		
				-0,48	-0,01	155		
				-0,51	0,00	155		
				-0,53	0,01	155		
				-0,55	0,02	155		
				-0.56	0.05	155		

Рис. 3. Результат работы программы

Координаты верхнего основания			Координ	аты нижнего	основания		
х	У	Z	х	У	Z	Колличество вершин верхнего основания:	2
-0,77	-0,1	159,7	-0,40	0,06	157,5	Колличество вершин нижнего основания:	41
-0,67	-0,05	157,9	-0,38	0,05	157,5	Площадь верхнего основания:	0
			-0,36	0,04	157,5	Площадь нижнего основания:	0,034
			-0,35	0,03	157,5	Средняя разность высот:	1,3
			-0,34	0,02	157,5	Объем объекта:	0,0000221
			-0,32	0,01	157,5		
			-0,30	0,00	157,5		
			-0,29	-0,01	157,5		
			-0,27	-0,01	157,5		
			-0,25	-0,01	157,5		
			-0,23	-0,02	157,5		
			-0,22	-0,02	157,5		
			-0,20	-0,02	157,5		
			-0,17	-0,03	157,5		
			-0,15	-0,03	157,5		
			-0,14	-0,05	157,5		
			-0,13	-0,06	157,5		
			-0,13	-0,08	157,5		
			-0,14	-0,10	157,5		
			-0,14	-0,11	157,5		
			-0,15	-0,13	157,5		
			-0,16	-0,14	157,5		
			-0,17	-0,15	157,5		
			-0,18	-0,16	157,5		
			-0,20	-0,16	157,5		
			-0,21	-0,15	157,5		
			-0,23	-0,15	157,5		
			-0,25	-0,15	157,5		
			-0,27	-0,14	157,5		
			-0,29	-0,14	157,5		
			-0,31	-0,13	157,5		
			-0,32	-0,13	157,5		
			-0,35	-0,12	157,5		
			-0,36	-0,10	157,5		
			-0,37	-0,08	157,5		
			-0,38	-0,07	157,5		
			-0,39	-0,05	157,5		
			-0,39	-0,02	157,5		
			-0,40	0,00	157,5		
			-0,41	0,02	157,5		
			-0,42	0,03	157,5		

Рис. 4. Результат работы программы

Анализ результатов

В век информационных технологий создано большое количество программ, которые ускоряют процесс решения различных инженерных задач, в том числе и геодезических. Так, на основе языка программирования Visual Basic for Applications в Microsoft Office предложен метод среднего арифметического для определения объемов объектов.

В ходе работы по топографической карте 1:10 000 был подсчитан объем горы Малиновская различными методами. Результаты представлены в таблице 2.

					1 иолици 2
Метод	Аналитиче-	Графоаналити-	Вероятностно-	Средне арифме-	Средне арифмети-
	ский	ческий	статистический	тический	ческий
					(Microsoft Excel)
Объем объ-	0,0002195	0,0002245	0,0002135	0,0002181	0,0002181
екта, <i>км</i> ³					
Время вы-	30	30	35		20
полнения					
работы,					
мин					

Исходя из результатов таблицы 2, можно сделать вывод о том, что вычисление объемов объектов методом среднего арифметического является не только быстрым, по сравнению с другими методами, но и достаточно точным. Такое заключение было сделано на основании того, что наиболее точным из используемых классических методов вычисления объемов объектов является аналитический метод, а результат получившийся методом среднего арифметического отличается от него на 0.6%.

Для проверки корректности работы программы был произведен подсчет объема объекта в Microsoft Excel, путем введения в ячейки формул необходимых для вычисления. Результат исследуемого параметра при проверке в Microsoft Excel остался неизменным, что говорит о том, что код программы написан корректно. Полученный результат подтверждает надежность предложенного метода и говорит о возможности использования его в учебном и производственном процессе.

Список использованной литературы

- 1. Баландин В.Н., Кладовиков В.М., Охотин А.Л. Решение геодезических и маркшейдерских задач на микрокалькуляторах. М.: Недра, 1992. –129 с.
- 2. Берлянт А.М. Картография: Учебник для вузов. М.: Аспект Пресс, 2011. 467 с.
- 3. Волков Н.М. Принципы и методы картометрии. М.: АН СССР, 1950. 326 с.
- 4. Павлова О.А., Павлов В.И. Картография: Практикум. СПб.: Горный университет, 2012. 67 с.
- 5. Салищев К.А., Гедымин А.В. Картография. М.: Географгиз, 1955. –407 с.
- 6. Слепцова Л.Д. Программирования на VBA в MicrosoftOffice 2010. М.: ООО «И.Д. Виль-ямс», 2010. 432с.